自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

FontTian的博客

【数据启示录】数据是现实世界的一种表现形式,也是我们认识世界,改造现实的燃料。

  • 博客(22)
  • 资源 (5)
  • 论坛 (6)
  • 收藏
  • 关注

翻译 hyperopt中文文档:Scipy2013

Scipy2013Font Tian translated this article on 23 December 2017SciPy2013摘要提交标题Hyperopt:用于优化机器学习算法的超参数的Python库作者詹姆斯·伯格斯特拉,丹·维明斯和戴维·C·考克斯(James Bergstra, Dan Yamins, and David D. Cox)简介James Bergstra是滑铁卢大

2017-12-23 18:25:25 1400

翻译 hyperopt中文文档:RelatedWork

相关工作Font Tian translated this article on 23 December 2017与Hyperopt相关的软件链接,以及常用的贝叶斯优化工具。使用Hyperopt的软件 hyperopt-sklearn - 使用hyperopt跨Sklearn估计器进行优化(Work In Progress)。hyperopt-convnet - 优化用于图像分类的卷积体系结构(

2017-12-23 18:24:01 1219

翻译 hyperopt中文文档:Recipes

食谱(Recipes)Font Tian translated this article on 23 December 2017如何对一些给定值的配置空间内的一些值进行采样ampling%2520in%2520hyperopt.ipynb)

2017-12-23 18:22:59 943

翻译 hyperopt中文文档:Parallelizing-Evaluations-During-Search-via-MongoDB

通过MongoDB在搜索时进行并行计算Font Tian translated this article on 23 December 2017 Hyperopt旨在支持不同类型的试用数据库。默认试用数据库(Trials)是用Python列表和字典实现的。默认实现是一个参考实现,很容易处理,但不支持并行评估试验所需的异步更新。对于并行搜索,hyperopt包含一个 MongoTrials 支持异步

2017-12-23 18:21:58 1485 2

翻译 hyperopt中文文档:Interfacing-With-Other-Languages(在其他语言中使用hyperopt)

其他语言接口Font Tian translated this article on 23 December 2017两种接口策略基本上有两种方法将 hyperopt 与其他语言进行连接:你可以为你的成本函数中编写一个Python包装器,这个函数不是用Python编写的(用Python调用其它语言,译者注)您可以将 hyperopt-mongo-worker 替换为直接使用JSON与MongoD

2017-12-23 18:20:42 846

翻译 hyperopt中文文档:Installation-Notes安装说明

安装说明hyperopt安装说明 Font Tian translated this article on 23 December 2017有关MongoDB的部分Hyperopt要求mongodb(有时候简称“mongo”)来执行并行搜索。据我所知,hyperopt与2.xx系列中的所有版本兼容,这是目前的(在这里下载最新版本)。它甚至可能与mongodb的所有版本兼容,我不知道mongo的任何

2017-12-23 18:19:48 2134

翻译 Hyperopt中文文档:FMin

FMinFont Tian translated this article on 22 December 2017这一页是关于 hyperopt.fmin() 的基础教程. 主要写了如何写一个可以利用fmin进行优化的函数,以及如何描述fmin的搜索空间。Hyperopt的工作是通过一组可能的参数找到标量值,possibly-stochastic function的最佳值(注意在数学中stocha

2017-12-23 18:18:44 6250 7

翻译 Hyperopt中文文档:Cite引用

引用Font Tian translated this article on 22 December 2017如果你想使用这个软件进行研究,请在论文中引用以下内容:Bergstra, J., Yamins, D., Cox, D. D. (2013) Making a Science of Model Search: Hyperparameter Optimization in Hundreds o

2017-12-23 18:17:22 716

翻译 Hyperopt中文文档:Home

主页Font Tian translated this article on 22 December 2017Hyperopt:分布式异步算法组态/超参数优化(主页,但这不是维基的主页)。加入hyperopt-announce 来获取重要更新的电子邮件通知(花费较低的流量)。文档:安装注意事项-主要是MongoDBFmin - 有关如何使用HyperOpt最小化功能的基本教程使用MongoDB

2017-12-23 18:16:00 2002

原创 Hyperopt官方中文文档导读

在2017年的圣诞节前,我翻译了有关HyperOpt的中文文档,这也时填补了空白,以此作为献给所有中国程序员,以及所有其他机器学习相关行业人员的圣诞礼物。圣诞快乐,各位。HyperOpt中文文档导读翻译的文档已经发布于github,请在我的项目Hyperopt_CN中的wiki查看相应文档.HyperOpt中文版wiki文档内容包括以下内容:HyperOpt中文文档导读,即真正的中文文档主页Ho

2017-12-23 15:56:30 4897

原创 AdaBoost算法特性

Boosting算法提升算法是一种常见的统计学习方法,其作用为将弱的学习算法提升为强学习算法.其理论基础为:强可学习器与弱可学习器是等价的.即在在学习中发现了’弱学习算法’,则可以通过某些方法将它特生为强可学习器,这是数学可证明的.在分类学习中提升算法通过反复修改训练数据的权值分布,构建一系列的基本分类器(弱分类器),并将这些基本分类器线性组合,构成一个强学习器.代表算法为Adaboost算法,ad

2017-12-18 16:55:06 3264

原创 sklearn中的回归决策树

回归决策树通过使用 DecisionTreeRegressor 类也可以用来解决回归问题。如在分类设置中,拟合方法将数组X和数组y作为参数,只有在这种情况下,y数组预期才是浮点值:下面是简单的使用示例%matplotlib inlinefrom sklearn import treeX = [[0, 0], [2, 2]]y = [0.5, 2.5]clf = tree.DecisionTr

2017-12-17 14:14:12 12900 2

原创 sklearn中的朴素贝叶斯算法

sklearn中的朴素贝叶斯分类器之前理解朴素贝叶斯中的结尾对sklearn中的朴素贝叶斯进行了简单的介绍. 此处对sklearn中的则对sklearn中的朴素贝叶斯算法进行比较详细介绍.不过手下还是对朴素贝叶斯本身进行一些补充.朴素贝叶斯算法朴素贝叶斯算法的数学基础都是围绕贝叶斯定理展开的,因此这一类算法都被称为朴素贝叶斯算法.朴素贝叶斯的分类原理是通过对象的先验概率,利用贝叶斯公式计算出后验概

2017-12-17 13:03:32 5040 15

原创 绘制决策树

绘制出决策树经过训练的决策树,我们可以使用 export_graphviz 导出器以 Graphviz 格式导出决策树. 如果你是用 conda 来管理包,那么安装 graphviz 二进制文件和 python 包可以用以下指令安装 conda install python-graphviz 或者,可以从 graphviz 项目主页下载 graphviz 的二进制文件,并从 pypi 安装 Py

2017-12-17 12:04:01 3680

原创 sklearn中的分类决策树

决策树决策树简介决策树是一种使用if-then-else的决策规则的监督学习方法.其三要素为,枝节点,叶节点与分支条件,同时为了减少过拟合还有剪枝方法 为了便于记忆,可以称其为一方法三要素决策树的优势便于理解和解释。树的结构可以可视化出来。训练需要的数据少。其他机器学习模型通常需要数据规范化,比如构建虚拟变量和移除缺失值,不过请注意,这种模型不支持缺失值。由于训练决策树的数据点的数量导致了决

2017-12-17 11:55:17 7102 4

原创 auto-sklearn案例解析二

度量函数-metricsauto-sklearn的度量函数是对sklearn度量函数的封装,我们即可以使用autosklearn已经封装好的metrics函数,也可以使用autosklearn的metrics函数封装器make_scorer函数封装我们自己的么metrics函数使用autosklearn已经封装好的metrics函数如果仅仅是获取的话,最简易的一种方式是直接去找源代码.你可以直接输入

2017-12-12 19:54:47 1816 1

原创 auto-sklearn案例解析一

简单的使用 >>> import autosklearn.classification >>> cls = autosklearn.classification.AutoSklearnClassifier() >>> cls.fit(X_train, y_train) >>> predictions = cls.predict(X_test)该例子来自于官网首页.

2017-12-12 19:50:32 4475

翻译 auto-sklearn简介

auto-sklearn是什么?auto-sklearn是一个自动化机器学习的工具包,其基于sklearn编写. >>> import autosklearn.classification >>> cls = autosklearn.classification.AutoSklearnClassifier() >>> cls.fit(X_train, y_train)

2017-12-12 19:47:05 6490

翻译 auto-sklearn手册

手册本手册从几个方面说明了如何使用auto-sklearn。并且 尽可能引用的例子来解释某些配置。官网首页.官网中文翻译例子auto-sklearn 下面的例子演示几个 方面的用法,他们都位于github:Holdout交叉验证并行计算按照时序使用回归连续和分类数据使用自定义指标时间和内存限制auto-sklearn 的一个重要功能时限制内存与时间的使用。特别是对于大型数据集,算法可

2017-12-12 19:44:53 9281 2

原创 理解朴素贝叶斯

前言在对我的数据科学与人工智能小组的新人进行小规模授课时讲课内容整理,有改动和删减.这可能是目前网络上最全面也最简单易懂的有关朴素贝叶斯的文章有关贝叶斯的一些闲谈无论是在生活中还是我们的科学理论中,经常会估计概率.比如,我们计算一下明天下雨的概率,或者中彩票的概率,或者其他概率.概率就是可能性. 但是在人工智能领域关于概率的问题却产生了两个不同的流派,那就是贝叶斯派和频率学派.频率学派认为万物发展

2017-12-08 14:41:12 1716 1

原创 机器学习数据集

前言数据集算是比较重要的学习资料了吧,在这里汇总一些好用的数据集以便使用, 关于一些内容可以参考一下知乎的提问UCI常用数据集UCI 一个不错的数据集下载网站 此处介绍几个点击;想比较高的数据集,后面有下载和存储的代码以及有关问题的说明.使用方式点击官方网站,你可以看到以下内容 可以看到右边有两个排行榜,最右边的是历史点击率的排行榜,位于该榜左边的也就是网页中间的是最新捐赠

2017-12-08 09:26:53 8525

转载 Python中单线程、多线程与多进程的效率对比实验

Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。对比实验资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密

2017-12-05 22:11:21 1200

中文停用词表 英文停用词表 中英文停用词表

多版本 中文停用词表 英文停用词表 中英文停用词表 以及python停用词词表合并程序(2个)

2017-07-04

wps for linux 2017版本

wps for linux 2017版本,安装的时候主要环境依赖,也可以去官网下载,但是现在官网不知道为什么只有2016的版本,不知道到是不是我没找到,还是怎么着.

2017-11-21

数据科学与人工智能

非常非常简洁的演讲时使用的ppt,我的眼睛以脱稿为主,所以本ppt内容很少,很少

2017-11-17

汉语交叉依存非投射现象

一般语言中存在着投射性现象,但是在汉语中也存在非投射现象.本论文是对汉语中非投射现象的证明.伪汉语自然语言处理经典论文之一.

2018-10-03

mongo开发指南

mongodb开发指南,适合新手入门用.这本书本身是我们老师教授nosql数据库时自己制作的教材.

2018-10-03

2020AI开发者大会PPT

发表于 2020-08-04 最后回复 2020-08-04

VIP会员无法兑换?

发表于 2020-06-20 最后回复 2020-06-20

博客审核未通过:包含非IT技术有关内容?

发表于 2019-12-26 最后回复 2019-12-27

恢复删除的博客

发表于 2019-01-11 最后回复 2019-01-24

博客头像上怎么突然多了个王冠,什么意思?

发表于 2018-11-26 最后回复 2018-11-26

为什么准专家勋章看不到呢?

发表于 2018-10-23 最后回复 2018-10-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除